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ABSTRACT

The Lyman-alpha forest has become an important tool for measuring the mass power spectrum at high
redshifts (z = 2�4). A crucial intermediate step is the measurement of the transmission power spectrum.
We present new methods to minimize the systematic and random errors for such a measurement, and
discuss their implications for observing strategies. Sources of systematic errors explored include metal
line contamination and continuum-�tting. We advocate the technique of trend-removal in place of
traditional continuum-�tting { here, a spectrum is normalized by its (smoothly varying) mean rather
than its continuum { this method is easily automated and removes biases introduced by continuum-
�tting. Moreover, trend-removal can be easily applied to spectra where continuum-�tting is diÆcult,
such as when the resolution or signal-to-noise is low, or for spectra at high redshifts. We further show
that a measurement of the continuum power spectrum (plus a related quantity) using trend-removal,
from either low redshift quasar spectra or the red-side of Lyman-alpha, can be used to constrain the
amount of spurious large scale power introduced by the uncertain continuum, and in principle allows
the removal of such contamination and thereby expanding scales probed to larger ones. We also derive
expressions for the shot-noise bias and variance of the power spectrum estimate, taking into account
the non-Poissonian nature of the shot-noise and the non-Gaussianity of the cosmic 
uctuations. An
appropriate minimum-variance weighting of the data is given. Finally, we give practical suggestions on
observing strategy: the desired resolution and S/N for di�erent purposes and instruments, and how to
distribute one's �nite observing time among quasar targets. Also discussed is the quasar spectroscopic
study of the Sloan Digital Sky Survey (SDSS), which has the potential to measure the power spectrum
accurate to better than 1% per mode (�k � 10�4 s=km) { the techniques presented here will be useful
for tackling the anticipated issues of shot-noise and continuum contamination.

1. INTRODUCTION

Recent theoretical research on the low column density (NHI
<
� 1014:5cm�2) Lyman-alpha (Ly�) forest at redshifts z � 2�4

points towards a picture in which the forest consists largely of mildly nonlinear 
uctuations of a smooth intergalactic
medium (e.g. Bi et al. 1992; Cen et al. 1994; Zhang et al. 1995; Reisenegger & Miralda-Escud�e 1995; Hernquist et al. 1996;
Miralda-Escud�e et al. 1996; Muecket et al. 1996; Bi & Davidsen 1997; Bond & Wadsley 1997; Croft et al. 1997; Hui
et al. 1997; Hui & Gnedin 1997; see Rauch 1998 for a review and further ref.). This provides the motivation to analyze
the quasar (QSO) absorption spectrum as a continuous �eld with 
uctuations, rather than as a collection of discrete
absorption lines. The two-point correlation or its fourier transform, the power spectrum, comes to mind as a useful
and common statistic used in other areas such as the microwave background or galaxy large-scale-structure. Indeed, its
application to QSO spectrum has been discussed by a number of authors (Zuo & Bond 1994; Miralda-Escud�e et al. 1996;
Bi & Davidsen 1997; Cen et al. 1998). Recently, Croft et al. (1998a; 1998b) (see also Hui 1999; McDonald et al. 1999)
have shown that the mass power spectrum can be recovered from the QSO transmission power spectrum, from which
one could further deduce cosmological parameters such as 
m (Weinberg et al. 1998; Phillips et al. 2000). There exist
at present a large number of high quality QSO spectra (e.g. Hu et al. 1995; Lu et al. 1996; Kirkman & Tytler 1997;
Cristiani et al. 1997; Kim et al. 1997; Rauch et al. 1997) which makes this an exciting �eld of research. Upcoming quasar
surveys such as the Sloan Digital Sky Survey (SDSS) and the Anglo-Australian Telescope Two Degree Field (AAT2DF)
will enlarge the database signi�cantly.
Here we take the view that the QSO transmission power spectrum / correlation is interesting in its own right, and focus

on how to best measure it from the observed QSO spectra, independent of the underlying physical picture of the forest.
The two major questions are: (1) what are the main sources of systematic errors and what are the best ways to bring

1Institute for Advanced Study, Olden Lane, Princeton, NJ 08540; NASA/Fermilab Astrophysics Center, Fermi National Accelerator Labo-
ratory, Batavia, IL 60510; e-mail: lhui@ias.edu

2Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637
3Physics Department, Princeton University, Princeton, NJ 08544
4Department of Astronomy, California Institute of Technology, Pasedena, CA 91125
5Canada-France-Hawaii Telescope, 65-1238, Mamalahoa Hwy, Kamuela, HI 96743
6Center for Astrophysics and Space Sciences, University of California, San Diego, MS 0424, La Jolla, CA 92093-0424

1



2

them under control? (2) how to estimate the shot-noise, and to best combine data with di�erent signal-to-noise (random
errors)?
Let us start by de�ning the transmission power spectrum and correlation function. Two possibilities arise. One of

them we call the un-normalized power spectrum Pun / two-point correlation �un (Weinberg 1998, private communication;
McDonald et al. 1999):

�un(u) = hf(u
0)f(u0 + u)i ; Pun(k) =

Z
�un(u)e

�ikudu (1)

where f is the transmission de�ned by f = e�� with � being the optical depth (the absorption is then 1 � f), u or u0

is the observed velocity (or redshift or wavelength) along a line of sight, and k is its fourier counterpart. The angular
brackets denote ensemble averaging.
The other we call the normalized power spectrum P / two-point correlation � (e.g. Zuo & Bond 1994):

�(u) = hÆf (u
0)Æf (u

0 + u)i ; P (k) =

Z
�(u)e�ikudu (2)

where Æf = (f � �f )= �f , with �f being the mean transmission hfi.
We will almost exclusively focus on the latter, but will discuss at some point the pros and cons of the two, especially

with regard to systematic errors. Unless otherwise stated, hereafter, power spectrum / correlation refers to the normalized
version.
The layout of the paper is as follows. In x3, we provide a brief overview of how the raw data output (a two-dimensional

CCD image) is reduced to a one-dimensional QSO spectrum. Note that the quantity f above is never observed directly.
It is important to have a description of how the whole data reduction procedure works, which is sometimes hard to �nd
in the literature. We give some illustrations by showing simulated spectra with various realistic levels of noise.
In x4, we discuss the estimation of the power spectrum and two-point correlation, beginning with the introduction of

the quadratic estimator in x4.1. An important point pertaining to the estimation of the two-point correlation is raised
here { most estimators employed in the literature are not optimal; an alternative is given here which is an analogue
of the Landy-Szalay estimator (Landy & Szalay 1993) introduced originally for galaxy surveys. Aside from this point,
we focus exclusively on the estimation of the power spectrum. In x4.2, we discuss three sources of systematic errors:
continuum-�tting, gaps and metal absorption lines. Particular attention is paid to issues related to continuum-�tting. We
advocate in x4.2.1 trend-removal to replace traditional continuum-�tting, which avoids the latter's pitfalls. We further
propose in x4.2.2 that the power spectrum of the continuum can be estimated using trend-removal as well, which o�ers
us a way to measure accurately the transmission power spectrum on large scales where the continuum 
uctuations might
be important. In x4.2.3, we discuss the e�ects of gaps and un-removed metal lines. We then turn our attention in x4.3 to
random errors. We emphasize here that the shot noise is not exactly Poisson distributed because of the particular way the
data is reduced. We point out the importance of subtracting the shot-noise-bias correctly, and describe a systematic way
of assigning error-bars to the power spectrum, and introduce minimum-variance-weighting techniques to combine data
of di�erent qualities. Some results here are stated without justi�cation. The aim in this section is to summarize useful
results for readers who might not be interested in details of the derivations, which are provided in the Appendices. The
techniques used in the Appendices should be of broad interest e.g. the issue of generally non-Poissonian shot-noise might
be relevant for galaxy power spectrum estimation.
Lastly, we conclude in x5. We summarize here our recipe for transmission power estimation { readers who would like

a quick overview of our methods can skip directly to this section, and only refer back to the relevant sections to �ll in
the details. We give general advice on observing strategies, and discuss in particular analysis issues relevant for the Sloan
Digital Sky Survey.
Before we begin, let us �rst make a few clarifying remarks about some of our notation and terminology.

2. TERMINOLOGY AND NOTATION: AVERAGING AND AVERAGES

In this paper, we refer to two di�erent kinds of 
uctuations which should be clearly distinguished. Take the observed
photon (or electron) count from a quasar as an example, N̂Q. As one moves along a spectrum, the photon count 
uctuates
because of two very di�erent reasons. First, it 
uctuates because the universe is intrinsically inhomogeneous, giving rise to
non-uniform absorption { we will refer to these as cosmic 
uctuations. Second, it 
uctuates because the observed photon
count is a discrete realization of the underlying cosmic signal { Poisson 
uctuation is the canonical example but not the
only possible one, we will refer to these as discrete 
uctuations.
We de�ne two di�erent kind of averages corresponding to these two di�erent kind of 
uctuations. The discrete average

of the observed photon count is denoted by hN̂QiD � ~NQ. In other words, N̂Q constitutes a discrete realization of the

underlying cosmic signal ~NQ. This signal ~NQ itself su�ers from cosmic 
uctuations, and we will denote its ensemble

average by h ~NQi = �NQ. A �xed quasar continuum is assumed in this ensemble average i.e. it is the 
uctuation in the
spectrum caused by intervening absorption that constitutes the cosmic signal we are after. Finally, we will sometimes use
h i to implicitly stand for hh iDi e.g. hN̂Qi actually means hhN̂QiDi which is the same as h ~NQi = �NQ

7

To recap:
7Two exceptions in the use of h i: in x4.2.2, we use h i to include averaging over an ensemble of di�erent continua, and in x4.3 we use h ikk

to denote averaging over a shell of Fourier modes.
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� N̂Q is the directly observed quasar photon count.

� ~NQ � hN̂QiD refers to the idealized quasar photon count if one has in�nite signal-to-noise (S/N).

� �NQ � h ~NQi = hhN̂QiDi refers to the quasar photon count if one has in�nite S/N and if one averages over all possible
cosmic 
uctuations keeping the continuum �xed e.g. by taking the same quasar and putting it at all possible
orientations in the sky. For instance, if ~NQ = NCe

�� where NC is the true continuum and � is the optical depth,
then �NQ = NC he�� i where he�� i is the mean transmission.

Note that, when we use the term discrete, it is not implied that N̂Q is necessarily an integer, although it is derived
from some integral quantity such as the electron/photon count. We use the term discrete 
uctuations instead of the usual

Poisson 
uctuations, because as we will see, N̂Q is often not Poisson-distributed i.e. hN̂2
QiD � hN̂Qi

2
D 6=

~NQ = hN̂QiD
(see x3.1). The term shot-noise is often used to describe Poissionian discrete 
uctuations, but in this paper we will use it
more broadly to include non-Poissonian discrete 
uctuations as well.
Finally, we note that we use the term 'quasar counts' throughout this paper to refer to the photon counts from a quasar,

rather than the number of quasars in a given patch of sky.

3. DATA REDUCTION: FROM THE CCD IMAGE TO THE QSO SPECTRUM

3.1. A Brief Description

We discuss brie
y here aspects of the data-processing necessary for understanding the noise properties of the reduced
quasar spectrum. The reader is referred to Horne (1986), Zuo & Bond (1994), Barlow & Sargent (1997), Rauch et al.
(1997) and Cen et al. (1998) for more discussions.
The raw data consist of a two-dimensional (spatial and spectral) array of counts (data numbers or photon counts

converted from them) from a CCD image. The one-dimensional array of estimated quasar counts in the spectral direction
(as a function of velocity, redshift or wavelength) is obtained by collapsing the data in the spatial direction in the following
fashion:

N̂�
Q =

X
i;�

W��W i�(N̂ i�
RAW �

~N i�
B ) (3)

We have introduced and will stick with the following notations: the Latin index such as i and the Greek index such
as � denote the spatial and spectral coordinates respectively of a CCD pixel (there are in fact a few exceptions, which

should be clear from the context); N̂�
Q is our estimated quasar count, N̂ i�

RAW is the raw count, and ~N i�
B is the mean

background count which includes the sky and the readout o�set; W i� is a weighting of the spatial pixels for each spectral
coordinate �, and W�� represents a rebinning of the spectral pixels that is sometimes done to achieve, for instance, a
linear wavelength scale. Note that the � and i dimensions do not necessarily align with the two perpendicular axes of the
CCD chip. The optical setup could be such that the spectrograph slit appears tilted at an angle to the CCD axes. We
use^to emphasize the fact that the quantity of interest is a random variable with 
uctuations. The~denotes a discrete

average: e.g. ~N i�
B = hN̂ i�

B iD where h iD denotes discrete averaging.

Implicitly assumed in the above formulation is that the discrete average ~N i�
B is known, which is of course not strictly

true, but since a typical slit covers a signi�cant number of pixels that do not have any quasar photons, and since the
background is often quite uniform, the discrete average can be estimated to high accuracy. Note also the readout o�set
can be measured using short exposures with closed shutters or from the CCD overscan region.
The weighting W i� typically has non-trivial spectral dependence (�) to remove at least two artifacts: variations in

detector eÆciency across the chip and a non-
at blaze. The former is usually estimated in a procedure called 
at-�elding
by shining a lamp into the detection system. The latter arises because of the non-trivial shape of a di�raction order.
This can be partially estimated in the 
at-�elding procedure, but is best done using a spectrophotometric standard star,
usually a white dwarf. While the correction for the �rst artifact should be quite accurate, the blaze-removal is often
approximate. Any residual that is not correctly removed will show up in the form of a non-trivial e�ective continuum.
We will see in x4.2 perhaps some evidence of it. We assume in this paper that such artifacts show up as 
uctuations on
large scales (since the blaze itself is smoothly and slowly varying across a given order) but not on small scales (we will
quantify the scales later on).
To make the above concrete, the raw count is given by:

N̂ i�
RAW = N̂ i�

B + N̂ i�
Q (4)

where the quasar contribution has the following discrete average:

~N i�
Q � hN̂

i�
Q iD = gi�psg

�
b
~N�
Q (5)

where gi�ps is the point-spread function which describes how the light from the quasar gets spread-out in the spatial direction

i at a given spectral coordinate �, and g�b accounts for the variation of the blaze and quantum eÆciency as a function of

wavelength. The symbol ~N�
Q denotes the underlying quasar count (or cosmic signal i.e. discrete averaged).
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Many di�erent rebinning kernels W�� (eq. [3]) are possible. The simplest choice is of course no rebinning with
W�� = Æ�� .
There are several possible choices of the weighting W i� (eq. [3]), but any sensible choice has to satisfy the requirement

that hN̂�
QiD = ~N�

Q, up to some constant normalization factor. This assumes that arti�cial 
uctuations introduced by the
blaze or detector eÆciency are correctly taken out. If not, it shows up e�ectively as part of the continuum.
We give two examples of W i� here. The �rst is basically a uniform weighting over the spatial pixels that correspond to

a given spectral coordinate:

W i� = 1=(g�b
X
j

gj�ps ) ; (6)

where the range of i, or j, is chosen to lie within, say, some fraction of the quasar seeing disk. There is sometimes an
additional complication due to cosmic ray hits, which will be discussed below.
The second is a minimum variance weighting (di�erent from minimum variance weighting for measuring the power

spectrum; x4.3) over the spatial pixels, introduced by Horne (1986):

W i� = (1=g�b )(g
i�
ps=V

i�
RAW)=(

X
j

[gj�ps ]
2=V j�

RAW) (7)

where V j�
RAW is the variance in the raw count:

V j�
RAW = h(N̂ j�

RAW)2iD � hN̂
j�
RAWi

2
D = ~N j�

Q + V j�
B (8)

VB
j� = ~N j�

S + V j�
R:O:

where V j�
B , the background variance, has two contributions, the sky variance ~N j�

S and the readout variance V j�
R:O:. A

word of caution is necessary here regarding the second weighting. The raw variance, V j�
RAW, depends on the underlying

cosmic signal or quasar count ( ~N j�
Q i.e. discrete averaged) which is not directly observable (the discrete averaged sky

count and the true readout variance are also strictly speaking not directly observable, but they can be estimated quite

accurately because they are relatively uniform and can be observed over a larger number of pixels). Modeling V j�
RAW

using the measured raw count (i.e. using N̂ j�
Q instead of ~N j�

Q in eq. [8]) could lead to a biased estimation of ~N�
Q. Horne

(1986) suggested an iterative scheme to avoid this problem, but implementations of this weighting should be checked for
a possible bias.
Pixels a�ected by cosmic-ray hits, which are usually easy to identify because of their wild 
uctuations and spiky nature,

are dealt with in two di�erent ways, depending on the severity. For a given spectral coordinate, if only a small fraction
of the corresponding spatial pixels are a�ected, the weighting in eq. (6) or eq. (7) is simply modi�ed by allowing i and
j to only range over the una�ected spatial pixels. However, if all or most corresponding spatial pixels are a�ected, then
all recorded counts at that spectral coordinate are discarded, leaving a gap in the reduced quasar spectrum. Gaps could
result also because of metal-line removal (an alternative would be to �t for the metal-line and subtract, instead of simply
discarding the pixels) or defects in the CCD.
Finally, the (random) error-array output at the end of the data reduction corresponds to an estimate ofq

h(N̂�
Q �

~N�
Q)

2iD =

sX
i;�

(W��W i�)2V i�
RAW (9)

where we have assumed that the noise-
uctuations are independent among the pixels. We emphasize that in practice

the error-array is only an estimate of the above quantity, because the true V i�
RAW is unknown, but is estimated using the

observed raw counts (using N̂ j�
Q instead of ~N j�

Q in eq. [8]).

It is clear from the above discussion that in general 
uctuations in N̂�
Q are non-Poissonian, in the sense that hN̂2

QiD �

hN̂Qi2D 6= hN̂QiD = ~NQ. This is because of several reasons. First, N̂Q su�ers from additional discrete 
uctuations from
the background counts. Second, the weighting W�� and W i� are in general non-trivial (i.e. not unity). A very simple
example of the e�ect of non-unit weights is: suppose we multiply a Poisson variable by a factor of 2 and call the result ŷ,
it is easy to see that hŷ2iD � hŷi2D = 2hŷiD 6= hŷiD.
For the rest of this paper, we will pick for simplicity the weighting kernels W�� = Æ�� and Wi� as given by eq. (6). In

the Appendices we will indicate where some of our expressions have to be modi�ed to account for more general weightings.

3.2. Simulated QSO Spectra

For illustrations, and for later analyses, we have generated several di�erent QSO spectra. The underlying noiseless
(theoretical) transmission (f = e�� ) is shown in the bottom panel of Fig. 1, and its associated power spectrum is shown
in the top panel of the same �gure. This is drawn from a SCDM (Standard Cold Dark Matter) simulation discussed in
Gnedin (1998) which made use of the Hydro-PM algorithm developed by Gnedin & Hui (1998). The cell-size (comoving
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size of 10 h�1kpc) is small enough to resolve the e�ective Jeans scale, and so should retain all small scale structures.
However, the box-size is unrealistically small (comoving size 2:56 h�1Mpc) which means a signi�cant amount of large scale
power is missing. For most of our investigations here, it is not necessary that the simulations are highly realistic, but our
simulated transmission power spectrum is in fact broadly consistent with an observed one (Fig. 14). The long line of
sight in Fig. 1 is generated by shooting a ray at some oblique angle through the simulation box and allowing it to wrap
around the box several times, but never repeating itself. The mean redshift here is z = 2:85. The ionizing background is
chosen to give he�� i = 0:64 (Press et al. 1993).

An example of a somewhat realistic reduced QSO spectrum (N̂�
Q in eq. [3]) and its error array (eq. [9]) can be found

in the bottom two panels of Fig. 2 (ignore the other two panels for the moment). They are generated based on the
prescriptions given in x3.1, assuming W�� = Æ�� and W i� is given by eq. (6). Brie
y speaking, what we do is to
�rst generate an array of g� which represents g�b

P
j g

j�
ps (i.e. we do not actually simulate the full two-dimensional CCD

image; the spatial dimension is collapsed into g�); then, we create a Poisson realization of the (intermediate) quasar count
g�N�

Ce
��� where NC is the continuum and e��� is predicted by our cosmological model; we similarly create a Poisson

realization of the background count g�� const: where the constant represents some fraction less than 1 and then subtract
from it its Poisson mean, the end-result is then added to the above quasar count; lastly, we divide by g� to obtain the
reduced quasar count N̂�

Q .
Note that the overall level of the reduced quasar count can be scaled up or down (because we are not interested in

the absolute brightness of the quasar), provided the error array is scaled accordingly to conserve signal-to-noise (S/N;
count divided by square root of the variance). This example resembles a high quality Keck HIRES spectrum, with S/N
reaching up to 100 at certain pixels. It is composed of 12 echelle orders, 50�A each (e.g. the instrument HIRES on the Keck
telescope is an echelle spectrograph which consists of two di�raction gratings crossed at 900 to each other; see Vogt et al.
1994). The pixel size is 0:05�A with a resolution Full-Width-Half-Maximum (FWHM) of 0:125�A. The example represents
a case in which a relative calibration (but not necessarily absolute 
uxing) between the orders has been attempted. The
dashed line in the bottom panel shows the input continuum.
The error-array shows a lot of variations. A model of the random error as Gaussian distributed with uniform S/N that

is sometimes used in the literature misses much structure. About 3% of the spectrum consists of gaps which arise due
to severe cosmic-ray hits. The spikes in the error-array correspond to wavelengths at which a fraction, but not all, of
the corresponding spatial pixels are a�ected by cosmic-ray hits. They also take up 3% of the spectrum. It is easy to see
how these spikes arise from eq. (6) and (9). At wavelengths where some of the spatial pixels are thrown out because of
cosmic-ray hits, Wi� is enhanced because the sum over j in its denominator is restricted to fewer pixels. Since it is the
square of Wi� that enters into the variance, a modest enhancement becomes a spike. Note how for each echelle order,
the S/N drops towards the two ends. This is because of the blaze function which tends to suppress the 
ux at the ends.
Note also that the S/N has a general decline towards the blue. This is due to a combination of a falling continuum, and
decreasing detector eÆciency.
Sometimes, a relative calibration between echelle orders is either diÆcult or simply not attempted. An example is

shown in Fig. 3. Note how the continuum is broken into 12 discontinuous pieces.8 These are taken from continuum-�ts
to actual data.
An example of data with much poorer quality is shown in Fig. 7. The pixel size is 0:5�A and the FWHM is 1:17�A. The

S/N is about 10 times worse than the two examples above. Such a spectrum could be the output of, say, a low dispersion
single-grating spectrograph, which does not have the characteristic division into short pieces as in the case of the echelle
spectrograph.
All other simulated data in this paper are slight variations of the above, which will be described in turn at the appropriate

places.

4. ESTIMATING THE POWER SPECTRUM / TWO-POINT CORRELATION

4.1. The Quadratic Estimator

Given the one-dimensional array of estimated quasar counts N̂�
Q (eq. [3]), how should one go about estimating the

two-point correlation or the power spectrum?
A common practice is to �rst continuum-�t, i.e. to estimate the continuum level N̂�

C and divide N̂�
Q by it to obtain an

estimate of the transmission f̂ = N̂�
Q=N̂

�
C . Then, the estimators for the un-normalized two-point correlation and power

spectrum (eq. [1]) are:

�̂un(u) =
X
�;�

w��(u)f̂�f̂� ; P̂un(k) =
X
�;�

w��(k)f̂�f̂� � b(k) (10)

where b(k) subtracts out the shot-noise (i.e. a bias), and w��(u) and w��(k) are weighting kernels for which we will give
some examples shortly (to be distinguished from W�� in eq. [3]). These are commonly called quadratic estimators for

the simple fact that they make use of the data f̂� in quadratic combinations.
De�ning the mean transmission to be �f , the obvious extensions of the above estimators, for the normalized two-point

correlation and power spectrum (eq. [2]; unless otherwise stated, the two-point correlation or power spectrum with no
8In some cases where the di�erent echelle orders overlap, there could be two jumps at each order junction.
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quali�cations refer to the normalized version), are

�̂1(u) =
X
�;�

w��(u)(f̂� � �f )(f̂� � �f )= �f2 ; P̂1(k) =
X
�;�

w��(k)(f̂� � �f )(f̂� � �f )= �f2 � b(k) (11)

However, the form of the power spectrum or two-point correlation estimator given above suggests an interesting variation
which allows us to avoid continuum-�tting altogether: (f̂� � �f )= �f can be estimated instead by (N̂� � �N�)= �N� where
�N� is the mean count de�ned by �N� � hN̂�i. Here h i denotes the cosmic average i.e. this corresponds to averaging out

the cosmic 
uctuations in f , for a �xed continuum (hN̂�i = N�
C
�f where N�

C is the true continuum). 9 Note that the
mean count is dependent upon � because of the slowly varying continuum. We will discuss how to estimate �N� shortly.
The key here is that the absolute level of the continuum gets divided out by de�nition. Hence, let us de�ne the following
alternative estimators of the two-point correlation and power spectrum:

�̂2(u) =
X
�;�

w��(u)Æ̂�f Æ̂
�
f ; P̂2(k) =

X
�;�

w��(k)Æ̂�f Æ̂
�
f � b(k) (12a)

Æ̂�f � (N̂�
Q � �N�

Q)= �N
�
Q (12b)

This alternative power spectrum estimator is what we will focus on, but we will also brie
y investigate the behavior of
the estimators in eq. (10) and (11).
It remains to specify what w��(u), w��(k) and b(k) are. The simplest choice is to use uniform weighting i.e. for the

two-point correlation, it corresponds to:

w��(u) = ���(u)=
X
��

���(u) (13)

where ���(u) is equal to one if the two pixels � and � are separated by a distance u (or more generally, the distance falls
into a bin that is centered around u with some �nite width), and zero otherwise. Using the above w��(u) corresponds to
simply counting all pairs separated by a distance u, normalized by the total number of pairs.
With the above weighting, eq. (12) is analogous to an estimator of the two-point correlation introduced by Landy

& Szalay (1993) for galaxy surveys: (DD � 2DR + RR)=RR, if one identi�es DD with
P

�� w
��(u)N̂�N̂�, DR withP

�� w
��(u)N̂� �N� and RR with

P
�� w

��(u) �N� �N� and assumes �N� varies very slowly with � on the scale of interest

u (the analogy becomes exact in the limit of a uniform �N�). As shown by Landy & Szalay (1993) (see also Szapudi &
Szalay 1998; Dodelson et al. 1997), a common alternative estimator DD=RR� 1 (equivalent to the estimator used by e.g.
Zuo & Bond 1994; Cen et al. 1998) is actually less desirable as it gives a larger variance compared to (DD�2DR+RR)=RR.
With this being said, we are going to focus our attention on the power spectrum from now on, although most of our

treatments below can be applied to the two-point correlation as well. For the power spectrum, the simplest choice of
uniform weighting corresponds to:

w��(k) = (L=N 2)R��(k) ; R��(k) � (1=nk)
X
k0

e�ik
0(u��u�) (14a)

b(k) =
L

N 2

X
�

q� �N�
Q + V �

B

( �N�
Q)

2
; q� �

X
i

(W i�)2gi�psg
�
b ; V �

B �
X
i

(W i�)2V i�
B (14b)

where L is the total length of the spectrum (in whatever units one prefers) and N is the total number of spectral pixels,
R��(k) represents an average of the Fourier basis over some bin or band in k-space i.e. we estimate the power spectrum
at a bin centered at k by averaging over contributions from each k0 that belongs to the bin (nk is the total number of
modes in it). 10 The symbol b(k) represents the shot-noise contribution to the power that has to be subtracted o�, gi�ps
and g�b represent the point-spread function and the blaze as in eq. (5), and V �

B is the background contribution to the
shot-noise (including the sky and readout, see eq. [8]). Note how a part of the shot-noise depends on the reciprocal of
the mean quasar count, as expected for Poisson 
uctuations, quite analogous to the shot-noise of galaxy distributions. 11

However, the factor q�, which arises from non-trivial weighting of CCD pixels (W i�; eq. [3]), signi�es that the shot-noise
is not strictly Poisson distributed. Moreover, there are extra contributions to the shot-noise from the background counts,
which are generally absent in the case of galaxy surveys. Derivations of the above statements are given in Appendix A.
The corresponding power spectrum estimator obeys:

hP̂2(k)i =

Z
dk0

2�
G(k; k0)P (k0) ; G(k; k0) �

X
��

w��(k)eik
0(u��u�) (15)

9It is implicitly assumed that discrete averaging has been carried out before cosmic averaging i.e. we use h i interchangeably with hh iDi.
See x2.
10See Seljak (1998) and Bond et al. (1997) for discussions on precautions one should take on binning.
11See e.g. Feldman et al. (1994).
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where G is a window function that resembles, for k� 1=L, a delta function centered at k = k0 with a width of the order
of 1=L. The normalization of w��(k) in eq. (14a) ensures that

R
dk0G(k; k0)=2� = 1. See Appendix A for a derivation.

It should be emphasized, however, that the above statements are strictly true only if one ignores uncertainties in the
mean count �N�

Q { i.e. �N�
Q is not known a priori but is instead estimated from the same data from which one is trying to

measure correlations. We will discuss this further in x4.2.2. It suÆces to say here that our results in this section remain
valid as long as one stays away from scales comparable to the entire length of the quasar spectrum.

4.2. Systematic Errors

4.2.1. Continuum-�tting versus Trend-removal

The power spectrum estimator P̂2 in eq. (12), which we are going to focus most of our attention on, requires an estimate
of mean count �N�

Q. The mean count is not strictly uniform because of a slowly 
uctuating continuum i.e. �N�
Q = N�

C
�f

where N�
C is the continuum and �f is the (
at) mean transmission. We assume �N� has the following form:

�N�
Q =

X
a

Capa� (16)

where p0 is a constant, p1 is the �rst order polynomial (p1� = u�), p2 is the second order polynomial (p2� = (u�)2), and so

on. The coeÆcients Ca need to be estimated from the quasar counts N̂�
Q. Note that most of our following arguments would

go through for a di�erent set of basis functions. One key assumption we will exploit is that �N� is slowly 
uctuating, so
that we can truncate the above series at relatively low orders. Continuum-�tting in practice makes the same assumption.
To estimate Ca, we use a linear estimator:

Ca =
X
�

Ma�N̂�
Q (17)

whereM is a matrix to be speci�ed. Comparing eq. (16) and (17), it is not hard to see thatM has to satisfy
P

�M
a�pb� =

Æab. The simplest choice is to adopt, in vector notation, M = (ppT)�1p where ppT in component-form is [ppT ]ab =P
� p

a�pb�. In summary, this means our estimator for the mean quasar count is

�N�
Q =

X
�

L��N̂�
Q ; L � pT(ppT)�1p (18)

where L in component-form reads L�� �
P

ab p
a�~pabpb� with ~pab being the inverse of the matrix [ppT ]ab. More sophisti-

cated versions of the above can be found in Rybicki & Press (1992). Our experience is that the simple version given here
suÆces, because the shape of the true quasar continuum is quite uncertain anyway.
Note the crucial di�erences between traditional continuum-�tting and an estimation of the mean count as described

above. The above method makes no reference to the absolute level of the continuum i.e. the count level where there is
supposedly no absorption. Continuum-�tting in practice often involves human intervention (eye-balling) in the identi�-
cation of such a level. In contrast, eq. (18) is straightforward to implement and automate. The mean count is then used
to normalize the quasar count as in eq. (12b) before the power spectrum is estimated (eq. [12]). We call this procedure
trend-removal to distinguish it from traditional continuum-�tting. Trend-removal is widely used in other areas (e.g. Press
et al. 1992a; Rybicki & Press 1992; Tegmark et al. 1998). It is akin to the estimation of, say, the long-term trend of the
stock market in the midst of all its daily 
uctuations.
Eq. (18), together with eq. (12) and (14), completely speci�es the main power spectrum estimator we advocate. Several

tests follow.
Test 1
In Fig. 2, we show the e�ect of di�erent choices of the mean-transmission basis p (eq. [16]). The simulated spectrum

is of Keck-HIRES quality, with a S/N as high as 100 at certain pixels, and it assumes one has a good relative calibration
between the di�erent echelle orders (12 in all) i.e. an almost ideal, state-of-the-art observed spectrum. The second panel
from the top shows the recovery of the mean transmission. The solid line represents the true (input) mean. The rest
shows the recovered mean for di�erent bases: dotted line for a basis consisting of p0 only (a constant i.e. the continuum
or the mean is modeled as completely 
at); short-dashed line for a basis consisting of polynomials up to the third order;
long dashed line for also a basis of polynomials up to the third order but with coeÆcients �tted separately for each echelle
order. The short-dashed line seems to give the best match to the true mean. However, none of them is perfect because
the true mean does not, by choice, have a polynomial shape. This is what is likely to happen in practice { lacking a good
understanding of the physics that determines the continuum shape of any given quasar, the best one can do is to pick
a reasonable basis which contains enough freedom to describe the general features of the continuum, but not so much
freedom that one over�ts.
The important question is what impact the choice of basis has on power spectrum estimation. This is illustrated in the

top panel of Fig. 2, where the fractional error in the measured power spectrum is shown. The one that gives the best
match to the true power spectrum is indeed the one where a simple basis of p0, ..., p3 is used for the whole length of the
simulated spectrum. The biggest e�ect of under�tting (dotted line) or over�tting (long dashed) the mean transmission
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is on the power spectrum estimation on large scales. They cause respectively over- or under-estimation of the large scale
power spectrum. An additional e�ect is that over�tting tends to introduce spurious power on small scales as well { witness
the enhanced 
uctuations in the error on small scales for the long-dashed line. We will see this more clearly in the next
Test.
Without any prior knowledge of the intrinsic continuum shape of an observed quasar, how does one decide if one is

over�tting or under�tting? One way is to look at the region of the observed spectrum redward of the Ly� emission line,
which is free of the forest, and the continuum is therefore relatively easy to reconstruct. Assuming the general level
of continuum-
uctuation is the same both redward and blueward of Ly�, one can then gain an idea of what a good
mean-transmission basis might be. Low redshift QSO spectra, where the continuum can be quite easily recovered even
blueward of Ly�, can also be used to gauge the scales at which the continuum 
uctuates { naturally, one could also use
such spectra to check the assumption that continuum-
uctuations have similar characteristics redward and blueward of
Ly� (more on this below).
Test 2
In Fig. 3, we took the continuum-�ts to an observed quasar spectrum and use them as the input continuum for our

simulation. The simulated spectrum here represents a case in which no relative calibration between echelle orders have
been attempted, which is often the case. This is why the continuum in the bottom panel is broken up into 12 pieces. The
second panel from the top again illustrates the recovery of the mean transmission: dotted line for a 
at model-continuum
for each order, and dashed line for a basis of polynomials up to the third order, also separately for each order. The solid
line is the true mean transmission. The top panel shows the accuracy of the corresponding power spectrum estimations.
The assumption of a simple 
at continuum for each order gives a power spectrum that is accurate to � 1%. On the other
hand, over�tting with up to third order polynomials not only causes an under-estimation of power on large scales, but
also creates spurious power on small scales.
Combining Fig. 2 & 3 (note that they show the power spectrum estimation on di�erent scales), the lessons are: 1. it is

better to err on the side of under�tting the mean, which tends to over-estimates the power on large scales, but leave the
power on small scales relatively una�ected (this relies crucially on the fact that the continuum has 
uctuations only on
large scales); 2. without suÆcient prior knowledge of the true shape of the continuum, one can at least make conservative
statements about the small-scale power, but the large-scale power is likely prone to systematics, unless some correction is
made.
One additional comment: the input continuum in Fig. 3, which is taken from �ts to actual data, certainly seems to

suggest that the observed continuum has 
uctuations on scales of an echelle order (� 50�A). (We will quantify this better
in x4.2.2.) It is unclear whether this is truly due to the intrinsic continuum, or whether it is an artifact of imperfect
blaze removal or 
at-�elding (see x3.1). If it is the former, then � 50�A represents a fundamental limit beyond which one
cannot reliably measure the transmission power spectrum, at least not without some additional prior knowledge of the
true continuum (which is what we will discuss in x4.2.2). If it is the latter, then in principle one should be able to do
better and extend the range of reachable scales to larger ones. Which is the case remains to be seen.
Test 3
In Fig. 4, we show the e�ect of traditional continuum-�tting, which requires some degree of eye-balling. The same

simulated spectrum as in Fig. 3 is given to an observer (one of the authors) with no knowledge of the input continuum.
Note that the top second panel now shows the actual continuum level rather than the mean transmission level. The
estimated continuum actually matches the true one surprisingly well. However, one can still see that the continuum is
generally underestimated. In the top panel, we show the accuracy of two di�erent power estimates. The long-dashed line
corresponds to an estimate of the un-normalized power spectrum as de�ned in eq. (1) (the estimator is eq. [10]). There is
clearly a � 5% positive bias here because of the underestimation of the continuum. One way to correct for it is of course
to use simulations: applying exactly the same procedure to the observed data and the simulated data, and see how much
bias results; but the size of the bias is likely to be model dependent. A simple alternative way to cure this problem is to
measure the normalized power spectrum instead, using the continuum-�tted data, i.e. using the estimator in eq. (11).
This is shown with a short-dashed line. It has an accuracy of � 1%, comparable to the dotted line in Fig. 3. In view of
this, it seems by-passing continuum-�tting altogether and proceeding simply with trend-removal is desirable.
Test 4
The failure of traditional continuum-�tting is more dramatic in cases where there is a lot of absorption e.g. at high

redshifts. In Fig. 5 is shown a simulated spectrum with the ionizing background adjusted to give a mean transmission of
0.39, which is about the observed value at z = 4 (Press et al. 1993). The continuum is more seriously under-estimated
leading to an overestimate of the un-normalized power spectrum by � 20% (the upper long-dashed line). The normalized
power spectrum, estimated either using the continuum-�tted data (eq. [11]) or using directly the trend-removed data (eq.
[12]), is much more accurately measured.
Test 5
Another example in which traditional continuum-�tting fails is shown in Fig. 6. This is based on the same spectrum as

in Fig. 1, but convolved with a Gaussian of 1:17�A FWHM and with much poorer S/N compared to the simulated spectra
above. This is likely not the product of an echelle spectrograph, hence there is no division into 12 orders. We repeat
the exercise of continuum-�tting and then power spectrum measurement as before. Interestingly, the signi�cant discrete

uctuations due to the low S/N here cause an overestimation (unlike in Test 3 and 4) of the continuum level, and so an
underestimation of the un-normalized power spectrum. Once again, the normalized power spectrum does not su�er from
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the same problem. Note the somewhat large 
uctuations of the estimated power { this is largely due to the high level of
shot-noise.
Fig. 7 shows the measurement of power spectrum through trend removal instead. A third order polynomial is used to

estimate the mean transmission. The resulting (normalized) power spectrum estimate (eq. [12]) is of comparable accuracy
to that using the continuum-�tted data. We also show in the top panel as a dotted line the power spectrum estimate
without shot-noise subtraction (eq. [14]). Clearly, shot-noise introduces a bias of the order of 10% here. We will have
some more to say about this in x5.
Tests 4 and 5 above drive home the point that the bias of an estimate of the un-normalized power spectrum from

continuum-�tted data is highly variable. It depends on the redshift, resolution as well as S/N of the data.
There have been in the literature discussions of an alternative method to normalize the quasar count: normalizing by

the maximum value of the continuum-�tted count, instead of by the mean count (e.g. McDonald et al. 1999). Note that

this procedure is also sensitive to the S/N and resolution of the data. For instance, max(N̂�
Q=N̂

�
C) = 1:4 in Fig. 6, while

max(N̂�
Q=N̂

�
C) = 1:12 in Fig. 4, where N̂�

C is the estimated continuum { they share exactly the same underlying cosmic
signal but the former has a higher level of discrete 
uctuations and poorer resolution { for reference, the true maximum
transmission should be 0.99. This means one should take care to simulate the noise properties correctly (e.g. Rauch
et al. 1997).
Lastly, we should emphasize that while trend-removal seems to be more desirable than traditional continuum-�tting

for the particular application here, continuum-�tting is still very useful for other purposes, which we will discuss in x4.2.2
and x5. But a fully automated procedure for continuum-�tting is clearly desirable.

4.2.2. A Bonus of Trend-removal { Power Correction on Large Scales

As is clear from some of the previous tests in x4.2.1, the power spectrum measured on large scales (i.e. scales comparable
to the typical scales where the continuum has 
uctuations) could contain spurious contributions from the continuum, the
size of which depends somewhat on the continuum/mean-shape-model one assumes. The strategy adopted in the x4.2.1 is
a conservative one: assume a model for the continuum that is as simple (or smooth) as possible, perform trend-removal,
and the resulting power spectrum would re
ect the true transmission power spectrum at least on small scales, but not
necessarily on large scales.
Can we do better? The answer is yes, under certain assumptions which we will make explicit shortly, and it illustrates

an added bene�t of trend-removal as introduced in the x4.2.1. Readers not interested in the details can skip directly to
the end of this section where two examples of how our technique of power-correction works are given (Fig. 9 and 10).
Let us start by recalling the power spectrum estimator in eq. (12), but focusing now on the fact that the true �N� is

unknown, and has to be estimated using eq. (18), which assumes implicitly that the true mean count obeys eq. (16),

which is of course only a reasonable guess. Let us use �̂N�
Q to denote the estimated mean count, which generally di�ers

from the true mean count �N�
Q. We have used �N� somewhat sloppily before when we really meant �̂N�

Q e.g. eq. [18]. In

other words, eq. [18] should be more accurately written as

�̂N�
Q =

X
�

L��N̂�
Q ; L � pT(ppT)�1p (19)

where p represents the basis functions. Similarly, the estimator for the power spectrum in eq. (12) should be more
accurately written as:

�̂2(u) =
X
�;�

w��(u)d̂�f d̂
�
f ; P̂2(k) =

X
�;�

w��(k)d̂�f d̂
�
f � b(k) (20a)

d̂�f � (N̂�
Q � �̂N�

Q)=
�̂N�
Q =

X



D�
 N̂

Q=
X
�

L��N̂�
Q ; D�
 � Æ�
 � L�
 (20b)

We now assume the following quantities are small: d̂�f and (
P

L�
N̂

Q �

�N�
Q)=

�N�
Q . The second quantity tells us how

far o� our estimate of the mean is from the true mean, while the �rst contains contributions both from the 
uctuation
in transmission and from the second quantity. Therefore, putting eq. (20b) and eq. (20a) together, the lowest order

contributions to the expectation value of the estimator P̂2(k) are:

hP̂2(k)i =
X
��
�

w��(k)hD�
D��
�N

Q
�N�
Q

�N�
Q
�N�
Q

i(1 + hÆ̂
f Æ̂
�
f i) (21a)

= PC(k) +

Z
dk0

2�
P (k0)Gn(k; k

0)

PC(k) �
X
��
�

w��(k)hD�
D��
�N

Q
�N�
Q

�N�
Q
�N�
Q

i (21b)
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Gn(k; k
0) �

X
��
�

w��(k)eik
0(u
�u�)hD�
D��

�N

Q
�N�
Q

�N�
Q
�N�
Q

i ; (21c)

(21d)

where we have retained the old de�nition of Æ̂
f as (N̂

Q �

�N

Q)=

�N

Q (eq. [12]). The above gives an idea of how biased the

estimator P̂2(k) is. Note that we have used h i here to include, in addition to the ensemble averaging as explained in x2, an
averaging over the ensemble of possible continua (which changes �N�

Q because it is directly proportional to the continuum
count N�

C ). We have assumed the 
uctuations in the continuum are uncorrelated with 
uctuations in the cosmic signal

Æ̂
f . We have also ignored the shot-noise contributions (e.g. b(k)) and will continue to do so for the rest of this section,
because the scales where the continuum contamination could be a problem are typically large enough that shot-noise is
subdominant.
The term PC(k) can be viewed as the power spectrum of the continuum 
uctuation. This is 
uctuation in the sense of

D�
 �N

Q = �N�

Q�L
�
 �N


Q. This 
uctuation would vanish if our trend-removal procedure were so accurate that the continuum

shape is exactly reproduced. The term Gn(k; k0) is the e�ective window function, replacing the one in eq. (15), which does
not take into account the error involved in trend-removal. The desirable normalization condition

R
Gn(k; k

0)dk0=(2�) = 1
no longer holds with the choice of w�� in eq. (14a). We have instead

Z
Gn(k; k

0)
dk0

2�
=

1

N

X
��


R��(k)D�
D�

( �N


Q)
2

�N�
Q
�N�
Q

� 1 + �G(k) (22)

where R��(k) is de�ned in eq. (14a).
Assuming for now PC(k) and �G(k) can be measured from a suitable ensemble of continua, we propose the following

alternative estimator to P̂2(k), which removes the bias due to continuum contamination:

P̂3(k) = [P̂2(k) � PC(k)]=[1 + �G(k)] (23)

The above gives us an unbiased estimate of the windowed power spectrum. The window is e�ectively Gn(k; k0)=[1+�G(k)]
which has the desirable normalization. We will not attempt further improvements such as deconvolution in this paper.
A useful alternative estimator, in cases where PC dominates the bias in P̂2(k), is

P̂4(k) = P̂2(k)� PC(k) (24)

The above estimator gets rid of most of the bias in the estimator P̂2(k) if PC(k)=P (k)� �G(k). An interesting corollary is

that, under such a condition, the bias in P̂2(k) is positive since PC(k) is positive de�nite. Needless to say, this statement
breaks down if PC(k) is not the dominant source of bias, or if the fractional error in the mean-estimation is large (see e.g.
Fig. 2).
It is interesting to compare our derivation above with the well-known one for the integral constraint bias in galaxy

surveys (s.g. Peebles 1980; Landy & Szalay 1993; Bernstein 1994; Tegmark et al. 1998). The integral constraint arises
from the fact that the mean density of a galaxy survey has to be estimated from the same survey from which one is also
measuring the power spectrum. The fact that the power spectrum estimator involves a non-trivial nonlinear combination
of the data gives rise to a bias (see Hui & Gazta~naga 1999), quite analogous to our derivation here. However, in the
standard derivations, it is assumed the shape of the mean density is known (often taken to be uniform), and therefore
PC(k) e�ectively vanishes, whereas �G(k) can be non-negligible on scales comparable to the size of the survey, but is
otherwise small. The reader is referred to Bernstein (1994) and Hui & Gazta~naga (1999) for discussions on higher order
contributions to the integral constraint.
How should one estimate PC(k) and �G(k)? Given an ensemble of continua (with counts represented by N�

C), our
procedure is to replace �N�

Q, which appears in the de�nitions of PC(k) and �G(k) (eq. [21b], [22]) with N�
C , and compute

the corresponding ensemble averages. Note that �N�
Q = N�

C he
�� i, but he�� i, which is taken to be constant over the �nite

redshift range of interest, is divided out in the relevant de�nitions of PC(k) and �G(k).
The hard question is of course how to obtain a suitable ensemble of continua. The �rst thing one might try is to measure

the power spectrum of the continuum-�ts (i.e. PC(k), or more generally, both PC(k) and �G(k)) from exactly the same
regions from which one attempts to measure the transmission power spectrum. While this can give us a crude idea of
how signi�cant the continuum power spectrum is, it is not entirely satisfactory because part of what has been ascribed to
the continuum might actually be large scale 
uctuations in the cosmic signal Æ�f that we are after, or vice versa.
The second option that comes to mind is to measure the continuum power spectrum from regions where the continuum

determination is relatively secure. Two possibilities are A. low redshift quasar spectra where the forest is much less
dense, and B. regions of spectra which lie redward of Ly� emission. The working hypothesis is that the continuum power
spectrum in these two regions is the same as, or at least similar to, the one in the region where we attempt to estimate
the transmission power spectrum (the forest of interest). There is no guarantee that the hypothesis is valid. For instance,
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regarding possibilityA, the continuum power could systematically evolve with redshift. In fact it probably does: assuming
that the statistical properties of the quasar continuum in rest frame do not evolve with redshift, the observed continuum
power would evolve as PC[k; z1] = PC[k(1+ z0)=(1+ z1); z0]. One could in principle constrain such redshift evolution with
a suÆciently large sample of low redshift quasar spectra. Regarding possibility B, it is not unreasonable to expect that
the continuum power is higher on the red side compared to the blue side, because there are generally more broad emission
lines on the red side (see e.g. Peterson 1997; Blandford, Netzer & Woltjer 1990; see below for caveats and a counter
example, however). An upper bound on the blue continuum power is by itself interesting because one can then obtain a
conservative estimate of how much spurious power is introduced by the continuum into one's forest power measurements.
Furthermore, systematic di�erences between the red and blue continuum power can be studied and quanti�ed with a
suÆciently large sample of low redshift quasars.
In Fig. 8, we show the continuum power spectrum measured from the continuum estimates on both sides of the Ly�

emission of a quasar at z=3 (QSO 1157+3143). The continuum estimates are shown in the bottom two panels. After
�tting a 
at mean to each echelle order, we compute the continuum power spectrum just as if this were the forest, and
the results from the red side and blue side are shown as solid and dotted lines respectively in the top panel. The two
power spectra look similar. However, we emphasize that because of the lack of small scale power in the continuum, most
of the power on small scales (k >

� 1�A�1) that we see in Fig. 8 is likely aliased from large scales. We will not attempt to
perform a deconvolution to obtain the true small scale power; it suÆces to note here that the true small scale power can
only be smaller than what is shown in the �gure. Also shown in the top panel is �G(k), on both sides of Ly�, which are
basically indistinguishable from each other. Note that �G(k) � 1. The second panel from the top shows the fractional
di�erence between PC from the red and blue sides, which is about 10%, with the blue continuum power systematically
higher than the red one. The results here, though drawn from admittedly a very small sample, are quite interesting for
several reasons.

� The excess of the blue continuum power spectrum over the red one is consistent with the following hypothesis: that
some of the 
uctuations in the forest have been wrongly assigned to the continuum during the continuum-�tting
process on the blue side. In other words, the true blue continuum power spectrum should be lower than the dotted
line in the top panel of Fig. 8. An upper bound on the true blue continuum power spectrum is already very
useful. One can use it to quantify how much, and on what scales, one should worry about spurious continuum power
introduced into estimation of the transmission power. One can compare Fig. 8 with the theoretical expectation in
Fig. 1, and see that the spurious power must be negligible for k >� 0:3�A�1. This explains why the determination of
the transmission power spectrum from both the continuum-�tted data or the trend-removed data is very accurate
in examples like Fig. 5, as long as one considers the normalized power. Unfortunately, the pieces of continuum
we examine are not long enough to yield useful information on larger scales or smaller k's. If one takes a crude
extrapolation, the continuum power spectrum (or more accurately its upper bound) might become non-negligible
compared to the transmission power spectrum at k � 0:1�A�1. However, one must keep in mind that the theoretical
transmission power spectrum in Fig. 1 is likely underestimated at small k's because the simulation lacks large scale
power. Nonetheless, there should be a genuine 
attening of the transmission power spectrum at large scales. In
any case, the �rst point to bear in mind is that an upper bound on the continuum power spectrum is useful as a
conservative estimate of the possible spurious power. 12

� Further, one can test the hypothesis that the excess in blue continuum power is due to contamination from the
forest: if this is true, one expects the red and blue continuum power spectra to converge, as one goes to lower
redshift quasars, because presumably, the blue continuum power spectrum should be less a�ected by the forest at
lower redshifts. Even if their di�erence does not converge to zero (as suggested by the larger number of broad
emission lines on the red side), but to some small but �nite value, this is still a useful exercise because it gives us
an idea of how di�erent the red and blue continuum power spectra can be. If we can determine the blue continuum
power spectrum to an accuracy of 10% say, and use this to correct for the transmission power spectrum on large
scales, this is already a signi�cant improvement over not correcting for the large scale power, or simply throwing
away the information on large scales altogether. For instance, if the blue continuum power does become comparable
with the transmission power at k � 0:1�A�1, not subtracting o� the spurious power would result in a fractional error
of 100%, while subtracting o� an approximate blue continuum power accurate to 10% reduces the error by an order
of magnitude.

Obviously, more testing using observed data is warranted, particularly on the estimation of red and blue continuum
power as a function of redshift. This will be carried out in a separate paper. One natural question that might occur
to the reader is whether a universal continuum power spectrum actually exists, given the large observed variations in
the continuum from one quasar to another. It suÆces to note that given an ensemble, the averaged power spectrum is
always a well-de�ned quantity. The tricky part is to make sure the ensemble from which one estimates the continuum
12One should be aware of a possible pitfall of the above argument, however. It is not impossible that the opposite can happen, that one

under�ts the blue continuum, and ends up underestimating the blue continuum power. This is probably not the case here, where the data
from which the blue continuum is estimated have high signal-to-noise and resolution (similar to the simulated spectrum in Fig. 4, where it can
be seen that the continuum �t tends to have features that follow the forest). Under�tting the blue continuum is more likely for low resolution
data, although even there, the situation is not clear: under�tting would result in underestimation of the continuum power on small scales, but
not necessarily on large scales. Obviously, more tests are needed.
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power spectrum has the same averaged continuum power spectrum as the ensemble of continua in the forest regions of
interest. As a simple example: one might want to make sure the same proportion of radio-loud quasars are included in
both ensembles. This is probably desirable if one uses the working hypothesis that low redshift blue continuum power
is similar to high redshift blue continuum power, as suggested above. Alternatively, if the hypothesis that blue and red
continuum power spectra resemble each other irrespective of redshift turns out to be a reasonable one, the simplest way
to make sure one has the right ensemble is to use both sides of Ly� for any give quasar: use the blue side for its forest,
and the red side for its continuum.
With all of the above caveats in mind, let us illustrate the technique of power correction with two idealized examples,

where it is assumed the right ensemble of continua is in hand.
In Fig. 9, we show in the bottom panel a simulated spectrum with a somewhat unusual continuum (middle panel) with a

fair amount of 
uctuations. We generate a set of 10 di�erent continua and impose each on our underlying cosmic absorption
to obtain a set of 10 di�erent simulated spectra (only one of which is shown in the �gure). We compute the power spectrum
using P2(k) as in eq. (20). The resulting fractional error from the true transmission power spectrum is shown as a solid
line in the top panel. There is clearly a lot of spurious power on large scales due to the imperfectly estimated mean count,
which re
ects the wild 
uctuations in the continuum. We then apply the power spectrum corrections: the dotted line
shows P̂3(k) from eq. (23) while the dashed line shows P̂4(k) from eq. (24). One can see that subtracting the continuum
power spectrum PC(k) alone removes most of the spurious power.
To make the example realistic, we have multipled the continua in the forest region by a power law that goes like (u�)0:96

(i.e. the 'blue' continuum), and similarly multiplied the continua from which we actually estimate the continuum power
by a power law of (u�)�0:01 (i.e. the hypothetical 'red' continuum). This is meant to mimic a possible turn-over of the
quasar continuum around Ly� (see e.g. Zheng et al. 1998 for evidence of a turn-over around Ly�). We have in mind a
situation in which the continuum power spectrum PC is estimated from the red side of Ly�. Clearly, the fact that the
mean trends on the blue and red are di�erent does not present an obstacle.
In Fig. 10 we show a similar version of the above, but with much noisier data and poorer resolution, and a mean

power-law of (u�)1:5 and a mean of (u�)�0:9 have been imposed on the continua on the blue and red sides respectively.
The same technique works here as well.
One last point we should make: when the quantities PC(k) and �G(k) are estimated from some ensemble of continua,

they in general receive shot-noise contributions. We have ignored shot-noise here, assuming the scales where power
correction is most interesting are suÆciently large that shot-noise is unimportant. This should be checked on a case by
case basis.

4.2.3. Gaps and Metal Absorption Lines

There are at least two other possible sources of systematic errors in addition to that due to continuum-�tting. Gaps
are quite common in observed spectra due to defects in the CCD, incomplete spectral coverage, or cosmic ray hits.
Fortunately, since they are at known locations, we can either consider only those parts of the spectrum that are between
the gaps (for instance when the gaps are large), or interpolate to �ll in the gaps (for instance when the gaps are small).
The latter is what we have implicitly done in all of the tests mentioned in x4.2.1, where 3% of the pixels are assumed
discarded because of cosmic-ray hits. The hits are typically one to a few pixels wide, and we simply �ll them in by linearly
interpolating the counts from neighboring pixels. Clearly, we can recover the power spectrum quite well in spite of the
need to interpolate.
A more challenging problem is possible systematics due to the presence of metal absorption lines. Shown in the bottom

panel of Fig. 11 is a simulated spectrum with resolution and S/N very similar to that of Fig. 3 except that metal
absorption lines as shown in the panel above have been added on top of the Ly� forest. This list of lines is taken from
a quasar spectrum redward of Ly� (HS 1103+6416, z = 2.19). The mean transmission is estimated by assuming a 
at
trend for each echelle order as before. What is interesting is the dotted line in the top panel, demonstrating the creation
of spurious power by the metal lines. The dashed / solid line shows fractional error in the power spectrum estimate if
all metal lines with � > 0:4 / � > 1 are assumed \detected", and therefore cut-out and treated as gaps as before (i.e.
interpolated across). Such a procedure seems to eliminate much of the spurious power. In practice, suÆciently strong
metal lines should be identi�able by their narrow widths.
Fig. 12 shows that metal absorption lines in data with lower resolution and poorer signal to noise have a relatively

small e�ect on the accuracy of the power spectrum estimation.

4.3. Random Errors: Shot-noise-bias, Variance and Minimum Variance Weighting

Random errors arise �rstly from (cosmic) sampling 
uctuations, and secondly from electron/photon counting, which
can be traced to 
uctuations in the intrinsic quasar counts, the sky counts and the readout (see x3.1). We will summarily
refer to the latter as shot-noise. Shot-noise a�ects two aspects of power spectrum estimation.
First, shot-noise introduces a bias which has to be subtracted o�. This is the term b(k) in eq. (14b). We will give

here a more general expression for b(k) suitable for di�erent weightings (w��). As we have demonstrated in Fig. 7,
shot-noise-bias subtraction can be important for low S/N data. We will return to this point in x5.
Second, shot-noise, together with cosmic 
uctuations, determines the variance of the power spectrum estimate. We

will give the expression for the variance in this section, and then address the question of how to best combine data with
di�erent levels of S/N to minimize the variance.
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The power spectrum estimator we will focus on is given in eq. (12). It is assumed trend removal as explained in
x4.2.1 has been performed. We ignore uncertainties due to the unknown continuum in this section. Here we do not limit
ourselves to the choice of uniform weighting (eq. [14]) as we have done so far. Let us rewrite w��(k) in eq. (12) as

w��(k) = �w��(k)R��(k) (25)

where R��(k) is given in eq. (14) and is an average of the Fourier basis over some bin centered at k, with width �k.
It can be shown that the variance of such a bin-averaged power estimate is given by (Appendix B)

V (k) � h[P̂2(k) � P (k)]2i =
N 3
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assuming the k of interest satis�es k � 1=L and that the width of the bin �k also satis�es �k � 1=L, where L is
the length of the spectrum. This is sometimes referred to as the classical limit in the case of galaxy power spectrum
measurement (Feldman et al. 1994; Hamilton 1997a). We will not consider larger scales here, because measurements on
such scales are likely dominated by systematic rather than random errors.
The symbol nk denotes the number of modes within the k bin of interest, N is the number of pixels in the length L;

q�, �N�
Q and V �

B are as de�ned in eq. (14b). The quantities q0� and q00� are analogous to q�:
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�
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�
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The symbols hT ikk, hBikk and hP ikk represent the shell-averaged trispectrum, bispectrum and power spectrum respectively
(h i here is to be distinguished from ensemble average discussed in x2):

hT ik1k2 �
1

nk1nk2

X
k0

1

X
k0

2

T (�k01; k
0

1;�k
0

2; k
0

2) (28a)

hBik1k2 �
1

nk1nk2

X
k0

1

X
k0

2

B(�k01 � k02; k
0

1; k
0

2) (28b)

hP ik1k2 �
1

nk1nk2

X
k0

1

X
k0

2

P (k01 + k02) (28c)

where the sum over k01 extends over modes within the bin centered at k1, and similarly for k02. The trispectrum T and
bispectrum B are Fourier transforms of the four and three point correlation functions, de�ned in an analogous manner to
eq. (2).
The variance as given in eq. (26) contains contributions from both cosmic 
uctuations and discrete 
uctuations (see
x2). The terms such as P (k)2 and hT ikk arise because of intrinsic 
uctuations of the cosmic signal from one part of
the universe to another { these terms are present even if one has data with arbitrarily high signal-to-noise. The terms
containing �N�

Q arise because of discrete 
uctuations { these we will loosely referred to as shot-noise.
As we have emphasized in x3.1 & 4.1, the shot noise contributions to the random error are not exactly Poisson-

distributed. The shot noise contributions (ignoring cosmic sample 
uctuations) in eq. (26b) would all be simply 1= �N�
Q

if N̂�
Q were strictly a Poisson variable. We have additional 
uctuations in N̂Q due to the background (sky and readout),

and also due to non-unity weights used in reducing the data (eq. [3]; see also end of x3.1).
Given eq. (26), it is simple to derive a weighting �w��(k) that minimizes the variance V (k), subject to the constraint

that the e�ective window (G as de�ned in eq. [15]) is properly normalized. This is most simply derived by minimizing
the following Lagrangian:

L(k) = V (k)� �(

Z
G(k; k0)

dk0

2�
� 1) (29)

where � is a Lagrange multipler. Di�erentiating the above respect to �w��(k), and setting the result to zero, we obtain:

�w��(k) = [E�(k)E�(k)]�
1

2 =M (k) ; M (k) �
X
�

[E�(k)]�1N=L (30)
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The corresponding shot-noise subtraction, instead of eq. (14b), would then be

b(k) =
X
�

�w��(k)
q� �N�

Q + V �
B

( �N�
Q)

2
(31)

where q�, N�
Q and V �

B are as de�ned in eq. (14b).
In summary, the minimum variance estimator of the power spectrum is
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X
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�(k)

1

2 Æ̂�f ]=M (k)� b(k) (32)

where b(k) is given by eq. (31), E�(k) and M (k) are given in eq. (26) and (30), and R��(k) is as in eq. (14a).

The minimumvariance estimator can be understood simply as follows: Æ̂�f at each pixel is weighed by 1=
p
E�(k) before

the array is Fourier transformed, squared and grouped to form band power estimates. Note that the above estimator
reduces to the one with uniform weighting (eq. [14]) if E�(k) were independent of �, e.g. when sample/cosmic variance
is signi�cantly larger than shot-noise (P (k)� [L=N ][q� �N�

Q +V �
B ]=[

�N�
Q]

2). It is important to note that the weighting as a

function of � is determined by �N�
Q rather than, say N̂�

Q . Down-weighing pixels with a lot of absorption (hence relatively

low N̂�
Q) would be a wrong thing to do, since the 
uctuations in absorption is the signal that we are after. The proper

procedure is to down-weigh pixels with an overall lower mean count �N�
Q.

Unfortunately, the minimum variance weighting given above is diÆcult to implement because one needs to specify
simultaneously P , B and T , in addition to the level of shot-noise. A common simpli�cation is to use the Gaussian
approximation in which E�(k) is approximated as:
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(see e.g. Hamilton 1997a). Note that in addition to ignoring the bispectrum and trispectrum terms, the above also ignores
certain power spectrum terms which are mixed with shot-noise { the last three terms in eq. (26), which is equivalent
to assuming that either the shot-noise or the correlation is suÆciently weak. With the above approximation, one can
start with some initial P and use the minimum variance weighting scheme to get a �rst measurement of P , and iterate
subsequently (Bond et al. 1997). Analogous (Gaussian) power spectrum estimators for galaxy-surveys and microwave
background experiments have been widely discussed in the literature (e.g. Feldman et al. 1994; Vogeley & Szalay 1996;
Tegmark et al. 1997; Hamilton 1997a; Tegmark et al. 1998; Bond et al. 1997; Seljak 1998).
We will not attempt to address here the important question of how signi�cant the non-Gaussian contributions are. A

proper treatment will involve the analysis of a large number of simulations or a large data-set, which we hope to present
in a future paper. It suÆces to say that the very nonlinear mapping from the density �eld to e�� will likely introduce
some degree of non-Gaussianity, even if the initial density �eld is Gaussian.
The use of observed data to study this issue is particularly interesting, and deserves some more comments. In principle,

since di�erent QSO sightlines typically sample independent regions of the universe, one can estimate the variance of
the transmission power spectrum, and hence infer the importance of the non-Gaussian contributions, using directly the

uctuations in power spectrum estimates from one sightline to another. However, one should keep in mind that shot-
noise also contributes to the variance. Since di�erent lines of sight generally have di�erent S/N, the sightline-to-sightline

uctuations in power spectrum estimates should be interpreted with care. In a dataset of several quasars, it is possible that
the quasar-to-quasar 
uctuations are dominated by a few with low S/N, and their mean-square would give an overestimate
of the true power spectrum variance.
We show in Fig. 13 an example in which the data consist of 6 high quality spectra (similar to Fig. 3) and 6 others

with S/N about 20 times smaller. The bottom panel shows the power spectrum estimated with uniform weighting (eq.
[14]) while the top panel represents the power spectrum estimated with minimum variance weighting using the Gaussian
approximation. The (1 �) error-bars are theoretical { they are estimated using eq. (26a) and (33). This illustrates how
our weighting scheme can reduce the error bars at high k's where shot-noise is important. Absent information on the
non-Gaussian nature of the power spectrum variance, we advocate the Gaussian weighting scheme (eq. [33]) as a rational
way to combine data with di�erent levels of S/N to reduce the variance, even though it does not necessarily achieve
minimum variance.
In combining the di�erent spectra with di�erent S/N, we have weighed the power spectrum estimate of each line of

sight by its inverse variance, which is an obvious generalization of the minimum variance weighting introduced above. For
instance, suppose we have two separate lines of sight A and B, we could combine the two power spectrum estimate P̂A

2

and P̂B
2 in the following way, assuming the two lines of sight are independent:
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where VA(k) and VB(k) are estimated with the same P but could have di�erent levels of shot-noise. The noisier quasar
spectrum is naturally down-weighed.
Lastly, we should emphasize the above discussion does not address the issue of cross-variance between power spectrum

estimates at two di�erent wave bands, which is introduced by the non-Gaussian terms (Meiksin &White 1999; Scoccimarro
et al. 1999). Hamilton (1999) introduced a scheme which simultaneously diagonalizes the covariance and minimizes it.
However, it makes speci�c assumptions about the form of the trispectrum and bispectrum, the validity of which for the
forest remains to be checked.

5. DISCUSSION

Our recipe for measuring the transmission power spectrum is summarized here.

� Given an array of reduced quasar counts N̂�
Q, identi�ed metal lines should be removed, especially the strong ones

(� > 1). Small gaps in the spectrum (e.g. due to cosmic-ray-hits removal) can be (linearly) interpolated over, while
large gaps should be avoided (x4.2.3).

� The mean quasar counts ( �N�
Q) is estimated using eq. (18). The mean-basis (the functional form of the mean-trend)

should be chosen to be as smooth as possible { under�tting is better than over�tting (see Test 1 and 2 of x4.2.1).
In practice it appears that a 
at mean suÆces for short spectra (� 50�A), while polynomials up to the third order
can be used for longer spectra (� 500�A). One can gain an idea of what a reasonable basis is using the red side of
Ly� or low redshift QSO spectra where the continuum can be seen more clearly.

� De�ne the trend-removed and normalized 
uctuation Æ̂�f according to eq. (12b), and the power spectrum is estimated
using the quadratic estimator in eq. (12a). Di�erent weightings are possible, the simplest that we recommend is
given in eq. (14). A more sophisticated weighting scheme which can reduce the random error is given by eq. (30),
(31), (32) and (33). If one is interested in the real-space correlation function instead, the recommended weighting is
eq. (13) { this gives a smaller variance compared to other estimators commonly used in the literature. We emphasize
that the shot-noise-bias (b(k) in eq. [14b], or in eq. [31]) should be subtracted correctly, especially for noisy data.

� If better control over systematic errors on large scales (>� 30�A) introduced by the unknown continuum is desired,
the techniques outlined in x4.2.2 can be used. The corresponding estimator is given in eq. (23), which requires an
estimate of the continuum power spectrum PC (eq. [21b]) and an additional correction factor �G (eq. [22]). This
procedure requires the identi�cation of an appropriate set of continua (see discussions in x4.2.2). Even if one is
not interested in the power spectrum on large scales, we recommend this procedure as a consistency check that the
spurious power introduced by the continuum is negligible on the scales of interest.

What implications does the above have for one's observing strategy? To discuss this question, we need to take a closer
look at the issue of shot-noise. The shot-noise enters in two di�erent places in the above discussion. First, it contributes
to the variance (random error) of the power spectrum estimate (eq. [26]). Second, it appears as a bias in the power
spectrum estimate that we have to subtract o� (e.g. b(k) in eq. [12a] & [14]).
In the literature on power spectrum measurement, shot-noise subtraction has been largely ignored (e.g. Croft

et al. 1998a; see McDonald et al. 1999 for an alternative approach where shot-noise is simulated rather than subtracted).
Let us estimate how important it is. The expression in the simplest case of uniform weighting is given in eq. (14b) (see
eq. [31] for more complicated weightings), which can be rewritten as
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where �u is the size of a pixel, N is the total number of pixels, and the rest of the symbols are as de�ned in x3.1: i is
the pixel-label in the spatial direction and � in the spectral direction, �N�

Q is the mean reduced quasar count, V i�
B is the

background variance, W i� is a weighting, and gi�ps and g�b are the point-spread function and blaze function respectively
(eq. [6] & [5]). An important observation is that the numerator within the summation is closely related to the variance
array which is often given along with a spectrum (eq. [9])13:
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The quantity N̂ i�
Q is of course di�erent from gi�psg

�
b
�N�
Q which we need to estimate the shot-noise, but since we are in

practice interested in an average over all pixels, it turns out the following estimate of the shot-noise is accurate to within
a percent for all cases we have tested:
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13See paragraph after eq. (9) and x2 on the distinction between ~N i�
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Without the above approximation, an exact estimate of the shot-noise would require the knowledge of N̂�
Q,
P

i(W
i�)2gi�psg

�
b

and
P

i(W
i�)2V i�

B .
Eq. (37) provides a useful means of estimating the shot-noise (see Appendix A on shot-noise estimation under more

complicated circumstances i.e. with non-trivial rebinning or weighting). One can simplify further by making a crude
approximation in relating b(k) to the typical signal-to-noise ratio of the data (which is often quoted at the continuum)
through

b(k) � (�u= �f)(N=S)2 (38)

which can be justi�ed if one ignores the part of the variance due to the sky and readout. We �nd that this simple rule
of thumb generally provides an underestimate of the shot-noise (particularly at low S=N where the background counts
become important), but is accurate to within about a factor of 2.
Fig. 14 summarizes some useful information for devising an observing strategy, based on our estimate of the shot-noise

in eq. (38) above. The solid line shows the mean observed transmission power spectrum at z = 3 taken from McDonald
et al. (1999).14 The two horizontal dotted lines show the level of shot-noise expected for the 2 extremes of the kinds of
observations we are likely to encounter { the bottom corresponds to very high signal to noise (S/N) observations with
HIRES quality resolution (e.g. Hu et al. 1995; Kirkman & Tytler 1997; Rauch et al. 1997), while the dotted line on the
top corresponds to low S/N observations expected for a large number of quasars in the Sloan Digital Sky Survey (SDSS).
We emphasize that the shot-noise level does not depend on the resolution per se, but on the pixel size for a given S/N.
SDSS is expected to produce � 1000 QSO spectra at S/N = 20 per pixel (QSO's at z > 2:7, where the redshift limit is
determined by the blue limit of the spectrograph, 3800�A), � 10000 at S/N = 15 and � 30000 at S/N = 7, corresponding
to i0 magnitude-cuts at 18, 19 and 20 respectively (Fukugita et al. 1996; Fan 1999). The pixel size of SDSS is quite
uniform in velocity 70 km=s, which is equivalent to 1:13�A at 4864�A (Ly� at z = 3).
Clearly, the importance of shot-noise depends on the scales at which one is interested in measuring the power spectrum.

A few interesting scales are shown in Fig. 14. First, instrumental resolution imposes a high k limit beyond which one
cannot reliably measure the transmission power spectrum. The resolution window is often characterized by a Gaussian with

a given FWHM. The e�ect of such a resolution window on the power spectrum can be represented by P (k)! P (k)e�k
2=k2�

where k� =
p
2=ln2=FWHM � 1:7=FWHM. Two representative k�'s are shown as long tickmarks at the top. Note that

even at k = k�, the resolution window reduces the power by 63% and so has a non-negligible e�ect. The Sloan FWHM is
about 2:1 pixels i.e. 147 km=s, or 2:4�A at 4864�A.
On the other hand, the range of scales that is currently being used to infer the mass power spectrum is indicated by

the interval near the bottom �kuse. The high k limit is set by the scales at which the shape of the power spectrum is
preserved in the transformation from mass to transmission (i.e. linear biasing e.g. Croft et al. 1998a). We can see that for
high quality Keck spectra, information from a whole decade of measurable scales is unused for the recovery of the mass
power spectrum { it would be very useful to push the current analysis techniques to these scales, since power on these
scales is of particular interest in constraining e.g. neutrino properties (Hui et al. 1997; Croft et al. 1999). Such an e�ort
would require disentangling the e�ects of peculiar velocities and thermal broadening, however. At the other end, the low
k limit of currently usable scales is set by the scales at which the continuum 
uctuates. This is indicated by the dashed
line at the top, where the transmission power spectrum is unknown.
From the above discussion, we can distill a few tips for observing/analysis.

� To ensure that shot-noise is subdominant, one might want to achieve S=N >
�

p
10�u= �f=P (kint:) where kint: is the

scale of interest, and �f is the mean transmission. The factor of 10 is somewhat arbitrary { this will ensure the shot-
noise contribution to the power spectrum variance is no more than about 20% (under the Gaussian approximation;
see eq. [33]), or the 1� error-bar on the power spectrum would only be increased by 10% due to the contribution
from shot-noise. An important question is what kint: should be { that depends on at what scales one can usefully
extract cosmologically interesting information. Current literature mainly focused on kint: <� 2�A�1, where P � 0:06�A,

therefore S=N � 20
q
�u=1�A would be suÆcient. Since P rises with scale, shot-noise would be even less important

at smaller k's. Note that with very small �u such as � 0:05�A, S=N as low as 4 � 5 is acceptable. To give some
examples, a S=N of 8 per 0:05�A can be achieved with an hour of exposure using Keck/HIRES for a V = 19 quasar;
on the other hand, a S=N of about 15 per 1:1�A is expected with just slightly under an hour of exposure using the
SDSS spectrograph for a i0 = 19 quasar.

� A corollary of focusing on only k <
� 2�A�1 is that observations with k�

>
� 3 � 2�A�1 or a resolution FWHM of 0:3�A

or R � 16000 at z = 3 are acceptable. The factor of 3 above (i.e. in 3� 2�A�1) is somewhat arbitrary { it ensures
that at k = 2�A�1, the resolution window does not reduce the power by more than 10%. If the resolution window
is known accurately, or if one is willing to sacri�ce information on the small scales close to k � 2�A�1, one could in
principle consider lower resolutions. We would like to emphasize, however, that in principle, the modes at k > 2�A�1

could still contain very interesting cosmological information, even though the current attempts at recovering the
mass power spectrum ignored them.

14We divide the un-normalized power spectrum (eq. [1]) of McDonald et al. by the square of their measured mean transmission to obtain
the normalized power spectrum given in Fig. 14. See tests 4 and 5 in x4.2.1 on the bias of the un-normalized power spectrum.
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� If shot-noise is subdominant compared to the power spectrum, the only other limiting factor to the size of the
random error is the total size of one's sample or the number of sightlines in it. Assuming all sightlines have
similar coverage with length L, then the fractional error of a single k-mode (i.e. in a k-bin of 2�=L) is given by
ÆP=P = C=

p
Nsight where Nsight is the number of sightlines assuming they are independent, and C = 1 under the

Gaussian approximation (eq. [33]), and a little larger than unity under more general circumstance (see e.g. Meiksin
& White 1999; Scoccimarro et al. 1999).

� How should one distribute one's observing time among quasar targets to minimize the random error on the trans-
mission power spectrum? There are many possible versions of this problem. We will discuss two, giving an explicit
solution for the �rst, and only general expressions for the second. In the simplest case in which all the candidate
quasar targets have similar magnitudes, given a �nite amount of observing time, one can deduce the optimal total
number of quasars one should target by

minimizing Ntot:
�1[P (kint:) +

�u
�f

A

t
]2 subject to Ntot:t = Ttot: (39)

where Ntot: is the total number of quasars targeted, kint: is the scale of interest, Ttot: is the total amount of observing
time one has, t is the amount of time one spends on each quasar, and 1=A is equal to (S=N )2 reached per unit
exposure time. The above assumes eq. (33) and that the sightlines are independent. The solution is easy to deduce:
Ntot: = [P (kint:) �f=�u][Ttot:=A], or t = A�u= �f=P (kint:). A typical value for 1=A is 1=A � 1200 hourper �A �
10(19�mag:)=2:5 � [ aperture=100m:2] � fthroughput, where fthroughput is about unity for Keck/HIRES, and � 2:5 for
the SDSS. Using again kint: � 2�A�1, for a 19th magnitude quasar, with an aperture of 6:25m:2 and assuming
�u = 1�A and fthroughput = 3, the exposure time is t = 14 minutes only! The above prescription, however, only
allows for just enough exposure time to reduce the shot-noise to a level comparable to the cosmic/sampling variance
(i.e. P (kint:) � (�u= �f)(N=S)2) { the sole aim is to maximize the number of quasars observed within a given length
of time to beat down the sampling variance. The prescription would certainly be di�erent if one has, for instance, a
�nite number of quasar targets, or if one has other purposes in mind { such as measuring the mean decrement, etc
(see earlier prescription for making shot-noise subdominant, equivalent to multiplying t by about a factor of 10). A
more general version of the above problem deals with a case where the quasars span a range of magnitudes i.e. A
is no longer the same number for each quasar. A simple ansatz is to assume t = �A�u= �f=P (kint:), in other words,
spending more time for fainter quasars because it takes longer to beat down the shot-noise, except that we have a

normalizing factor �which enforces the constraint of total observing time: � = Ttot:[ �fP (kint:)=�u]=
RA
Amin

A0n(A0)dA0

where n(A)dA is the number of quasars with A falling in the given range, and Amin corresponds to the brightest
quasar in one's sample. Then, we can determine how many quasars one should include, starting from the brightest

one, or how faint one should go by minimizing [
RA
Amin

n(A0)dA0]�1P (kint:)
2(1 + 1=�)2 with respect to A.

The following is particularly relevant for SDSS or comparable observations.

� In addition to contributing to the power spectrum variance, shot-noise also contributes a bias which has to be
subtracted o� (see e.g. Fig. 7). This is quite important for SDSS because, with > 104 sightlines, the survey has the
capability of reducing the fractional error of the power spectrum to < 1% per mode. Therefore, a bias of � 3�100%,
depending on the scale of interest (as indicated by the top dotted line in Fig. 14), is not acceptable and should be
subtracted o�. We note that analyses so far in the literature (e.g. Croft et al. 1998b; McDonald et al. 1999) focused
on higher quality data where S=N � 30, with �u ranging from about 0:04�A to 1�A, and so according to eq. (38)
and Fig. 14, the shot-noise bias was about 1% of the power or smaller and therefore could be ignored, although a
more careful check should be performed for some datasets with lower S=N .

� The low resolution of SDSS spectra implies that it would be diÆcult to obtain useful information on scales k � k� �
0:01 (km=s)�1 or 0:7�A�1. On larger scales or smaller k's, two problems have to be reckoned with. For k � 0:3k��k�,
the resolution window suppresses the power by 10% or more { therefore, one needs to have an accurate measure of
the resolution window to recover the true transmission power spectrum. 15 This can be achieved by using narrow
metal lines or arc lines. There are relatively few sky lines in the relevant part of the spectrum.

� For scales k < 0:004 (km=s)�1 or 0:2�A�1, the e�ect of the continuum has to be properly taken into account, and the
method of x4.2.2 can be useful here. From Fig. 14, it is clear that the range of scales accessible to SDSS would be
quite limited unless a correction for continuum contamination is applied.

It is worth pointing out that while the above quoted numbers are all based on z = 3, we do not expect them to change
signi�cantly for z = 2 or z = 4. This is in part because of the slow evolution of the transmission power spectrum {
the growth of the mass spectrum with time is partially compensated by the lowering of the mean decrement (McDonald
et al. 1999).
15We thank Rupert Croft for useful discussions on this point.
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At least three issues remain to be explored in future work. As we have emphasized, the concept of correcting for
continuum contamination in the transmission power on large scales as laid out in x4.2.2 is an interesting one, but requires
more testing. An important check is the measurement of continuum power spectrum as a function of redshift on both
sides of Ly� emission. Second, counts-in-cells analysis (i.e. measuring moments of the one-point probability distribution
function), just like power spectrum analysis, requires shot-noise subtraction, and since typically one considers cells at
the limit of resolution, shot-noise is likely non-negligible except for high S/N spectra. Counts-in-cells analysis provides
a very interesting way to test the gravitational instability paradigm (Gazta~naga & Croft 1998; Hui 1998; Nusser &
Haehnelt 1999), and should be done with care. Useful expressions will be presented elsewhere (Hui 2000). Lastly, as is
hopefully clear by now, the spirit of the methods presented in this paper is to avoid continuum-�tting and replace it with
trend-removal. We have demonstrated that this is possible for measuring the transmission power spectrum. However,
other quantities of interest such as the mean decrement requires an estimate of the continuum, by de�nition. Furthermore,
to theoretically interpret the transmission power spectrum in terms of the mass 
uctuation, current methods require the
measurement of the mean decrement to �x a free parameter in one's cosmological model, which is a combination of
the ionizing background, the mean baryon density and the mean temperature. Therefore, in a sense, the technique of
trend-removal only goes half-way in solving the problem of continuum-�tting. Although we still recommend our method
over continuum-�tting because the transmission power spectrum is an unambiguous quantity which can and should be
determined as accurately as possible (not to mention the fact that continuum-�tting is diÆcult with low S/N or low
resolution, or at high z), there is clearly a need for an alternative method to bridge the gap between the measured
transmission power and the theoretically interesting mass power. This will be explored in future publications (Hui &
Burles 2000; Zaldarriaga et al. 2000).
We thank for useful discussions Len Cowie, David Kirkman, Patrick Petitjean, Michael Rauch, Wal Sargent, Don

Schneider, David Weinberg, Don York and the participants of the 1999 Haifa workshop on the intergalactic medium and
large scale structure. We also thank Nick Gnedin for supplying a simulation. Special thanks are due to Matias Zaldarriaga
for pointing out the importance of aliasing and for many interesting discussions. This work was supported in part by the
DOE and the NASA grant NAG 5-7092 at Fermilab, and by the NSF grant PHY-9513835. LH thanks the IAS for the
Taplin Fellowship.

APPENDIX A

Our main aim here is to derive eq. (15) for the estimator P̂2(k) which is given by eq. (12) and eq. (14), with an eye
towards generalization to W i� di�erent from eq. (6) and W�� 6= Æ��. Derivations of results in x4.3 on estimator variance
and the minimum variance power spectrum estimator can be found in Appendix B. We will ignore the integral constraint
and assume �N� is known to high accuracy.
We need �rst of all the correlation matrix hÆ̂�f Æ̂

�
f i. We will do it in 2 steps, �rst let us derive hÆ̂�f Æ̂

�
f iD. Rewriting Æ̂f

(eq. [12b]) as (N̂� � ~N�)= �N� + ( ~N� � �N�)= �N� where ~N� = hN̂�iD, it can be shown that

hÆ̂�f Æ̂
�
f iD = Æ�f Æ

�
f +

1

�N�
Q
�N�
Q

h(N̂� � ~N�)(N̂� � ~N�)iD (40)

= Æ�f Æ
�
f +

1

�N�
Q
�N�
Q

X

i

W�
W �
 (W i
)2(hN̂ i

Q iD + V i


B )

where Æ�f is to be distinguished from Æ̂�f in that it has only cosmic or sample 
uctuations (eq. [2]), N̂ i

Q is a strictly Poisson

variable with an average given by eq. (5), and V i

B is the variance contributions from the sky and readout (eq. 8).

Taking the cosmic mean of the above, we obtain the correlation matrix

hÆ̂�f Æ̂
�
f i = �(u� � u�) +

1

�N�
Q
�N�
Q

X



W�
W �

X
i

[h(W i
)2gi
psg


b
~N

Qi+ h(W

i
)2iV i

B ] (41)

The second term on the right is the shot-noise contribution which has to be subtracted o�. Using the estimator in eq.
(12), with w��(k) given in eq. (14), the correct shot-noise subtraction is:

b(k) = (L=N 2)
X
��


W�
W �

X
i

[h(W i
)2gi
psg


b
~N

Qi+ h(W

i
)2iV i

B ]=( �N�

Q
�N�
Q) (42)

where we have made use of the assumption that W�
 is non-zero only for � and 
 on very small separations, and that
the k of interest satis�es k(u� � u
)� 1 on such separations.

Note that for weightings such as the one given in eq. (7), W i
 depends on ~N

Q which makes an estimation of the shot-

noise non-trivial. However, simpli�cation results in two extreme limits: in the signal dominated regime where ~N j�
Q � V j�

B ,

W i
 reduces to uniform weighting as in eq. (6); in the background dominated regime where ~N j

Q � V j


B , W i
 reduces to

(1=g
b)(g
i

ps=V

i

B )=(

P
j(g

i

ps)

2=V i

B ) which is independent of ~N


Q. In such cases, and for W�
 = Æ�
, the above b(k) reduces

to the one given in eq. (14b).
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For W�
 6= Æ�
 (i.e. rebinning has bee done; we continue to assume W i
 is roughly independent of the signal), we can
write b(k) as

b(k) � (L=N 2)
X
��


W�
W �


�N�
Q
�N�
Q

X
i

(W i
)2[gi
psg


b
~N

Qi+ V i


B ] (43)

where the term under summation of i is simply the variance array of the pre-rebinned data (eq. [36]), and one can replace
�N�
Q
�N�
Q by ( �N�

Q)
2, since W�
W �
 is non-zero only if � and � are close together. Eq. (37) is therefore replaced by the

following if the data have been rebinned:

b(k) �
�u

N

X
��

var (�; �)

�N�
Q
�N�
Q

(44)

where var (�; �) is the variance matrix of the rebinned data.
To complete our derivation, we need to show that the choice of w��(k) given in eq. (14) has the correct normalization

such that the window function satis�es
R
dk0G(k; k0)=2� = 1 (eq. [15]). Putting eq. (14) into eq. (12), and using the

correlation matrix given in eq. (41) together with the relation between the two point function and the power spectrum

in eq. (2), it is not hard to see that hP̂2(k)i satis�es eq. (15) with G(k; k0) given by
P

�� w
��(k)eik

0(u��u�). UsingR
dk0eik

0(u��u�) = 2�Æ��N=L then completes the derivation. One mightwant to explore more complicated data windowing
(e.g. Press et al. 1992b; Hamilton 1997b), but since in practice uncertainties in the large scale power estimate, where
the survey window matters most, are likely dominated by the continuum, the simple choice we have adopted is probably
adequate.

APPENDIX B

We derive here the band-power variance given in eq. (26). The power spectrum estimator is given in eq. (12) with the
matrix w��(k) given by eq. (25). We ignore here the uncertainty in the estimation of the mean count �N�

Q .
The band-power covariance can be written compactly as

C(k1; k2) � h�P̂
�(k1)�P̂

�(k2)i =
X
��
�

w��(k1)w

�(k2)(hÆ̂

�
f Æ̂

�
f Æ̂



f Æ̂

�
f i � hÆ̂

�
f Æ̂

�
f ihÆ̂



f Æ̂

�
f i) (45)

The band-power variance is simply the diagonal piece of this matrix: C(k; k).

We can work out hÆ̂�f Æ̂
�
f Æ̂



f Æ̂

�
f i� hÆ̂

�
f Æ̂

�
f ihÆ̂



f Æ̂

�
f i using the same methodology as used in Appendix A for hÆ̂�f Æ̂

�
f i: rewrite Æ̂

�
f

as (N̂� � ~N�)= �N� + ( ~N� � �N�)= �N� where ~N� = hN̂�iD , and as before, take the discrete-ensemble average h iD before
taking the cosmic average h i. The result is

C(k1; k2) =
X
��
�

w�
 (k1)w
��(k2)

 
(46)

hÆ�f Æ
�
f ihÆ



f Æ

�
f i + hÆ

�
f Æ

�
f ihÆ

�
f Æ



f i + hÆ

�
f Æ



f ihÆ

�
f Æ

�
f i+ hÆ

�
f Æ

�
f Æ



f Æ

�
f ic

+
1

�N�
Q
�N

Q

X
�i

W ��W 
�h(W i�)2[gi�psg
�
b
�N�
Q(1 + Æ�f ) + V i�]Æ�f Æ

�
f i

+1 other perm: : (�$ 
; � $ �)

+
1

�N�
Q
�N

Q

X
�i

W ��W 
�h(W i�)2(gi�psg
�
b
�N�
Q(1 + Æ�f ) + V i�

B )Æ�f Æ
�
f i

+3 other perm: :(� $ �; 
 $ �); (
 $ �); (� $ �)

+
1

�N�
Q
�N

Q
�N�
Q

X
�i

W ��W ��W 
�h(W i�)3[gi�psg
�
b
�N�
Q(1 + Æ�f ) + ~N i�

S ]Æ�f i

+3 other perm: :(�$ �); (� 
); (�$ �)

+
1

�N�
Q
�N�
Q
�N

Q
�N�
Q

X
�i�j

W��W ��W ��W 
�h(W i�)2(W j�)2(gi�psg
�
b
�N�
Q(1 + Æ�f ) + V i�

B )

(gj�ps g
�
b
�N�
Q(1 + Æ�f ) + V j�

B )

+
1

�N�
Q
�N�
Q
�N

Q
�N�
Q

X
�i�j

W��W ��W ��W 
�h(W i�)2(W j�)2(gi�psg
�
b
�N�
Q(1 + Æ�f ) + V i�

B )

(gj�ps g
�
b
�N�
Q(1 + Æ�f ) + V j�

B ) + 1 other perm: :(�$ �)

+
1

�N�
Q
�N�
Q
�N

Q
�N�
Q

X
�i

W��W ��W ��W 
�h(W i�)4gi�psg
�
b
�N�
Q(1 + Æ�f )i



20

�hÆ̂�f Æ̂
�
f ihÆ̂



f Æ̂

�
f i

!

The �rst set of terms (second line) arise from the shot-noise- free part of Æ̂�f , namely ( ~N�� �N�)= �N�. The next two sets

of terms (third + fourth and �fth + sixth lines) come from combinations of Æ̂�f involving products of two shot-noise terms

with two shot-noise-free terms. The next set of terms (seventh + eighth lines) arises from products of three shot-noise
terms and a noise-free one. The next set of terms (nineth to thirteenth lines) comes from products of four shot-noise
terms. The last term corresponds to what has to be subtracted o� to compute the covariance.
To make further progress, we assume W i� is independent of Æ�f , which is strictly correct for W i� given by eq. (6),

but only roughly so for eq. (7) (see discussion in Appendix A). Then, taking the small wavelength limit in the sense
that k;�k > 2�=L (�k is the size of a k-bin), and making use of the fact that W��W �� is only non-zero at separations
u� � u� much less than 1=k where k is the wavenumber of interest, we obtain

C(k1; k2) =
X
�

( �w��)2
N 3
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(47)

2

nk1
[P (k1) +

L

N

X
i

1

( �N�
Q)

2
h(W i�)2(gi�psg

�
b
�N�
Q + V i�

B )i
X
�


W ��W 
�]2Æk1k2 +
hT ik1k2
L

+4
1

N
hBik1k2

X
i

1
�N�
Q

h(W i�)2gi�psg
�
b i
X
�


W ��W 
�

+2(P (k1) + P (k2))
L

N 2

X
i

1

( �N�
Q)

2
h(W i�)3gi�psg

�
b i
X
��


W ��W ��W 
�

+2hP ik1k2
L

N 2

"
1
�N�
Q

(W i�)2gi�psg
�
b

X
��

W��W ��

#2

+
L2

N 3

1

( �N�
Q)

4
[(W i�)4(gi�psg

�
b
�N�
Q + ~N i�

S )]
X
��
�

W��W ��W ��W 
�

!

A few comments are in order. The terms in the third + fourth + nineth + tenth lines of eq. (46) are canceled by the
last term of eq. (46). The terms in the third + fourth lines of eq. (46) contain contributions proportional to B(k;�k; 0)
which vanish. There is also a term from the nineth line of eq. (46) that is proportional to P (0) which vanishes also. The
shot-noise terms in the second line of eq. (47) come respectively from the �fth + sixth + nineth + tenth lines of eq. (46).
The rest of the terms in eq. (47) basically follow the order they are presented in eq. (46).
Lastly, setting W�� = Æ�� and k1 = k2 then recovers eq. (26).
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Fig. 1.| The lower panel shows the transmission e�� as a function of wavelength u taken from a SCDM simulation, with no noise added.
The upper panel shows the corresponding (normalized) transmission power spectrum (eq. [2]). All subsequent simulated spectra in this paper
are based on this one, with various levels of noise, contamination, etc added.
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Fig. 2.| Bottom two panels show the reduced quasar spectrum (signal) with its noise array (eq. [9]), which resembles a high resolution
(8 km/s FWHM) echelle spectrum with 12 orders, each 50�A long. It is assumed a relative calibration between the di�erent orders has
been attempted. The spectrum is generated from the one in Fig. 1, with suitable noise added as described in x3.2. Note that the overall
normalization of the signal or noise is arbitrary but the ratio of the two is not. The dashed line of the bottom panel shows the input continuum
level. The second panel from the top shows the recovered mean-transmission for three di�erent choices of the mean-transmission-basis (p; eq.
[16]): dotted line for a 
at model-continuum/mean (p0 = 1 only); short-dashed line for a basis of polynomials up to the third order (p0 ...
p3); long-dashed line for a basis that is the same as that for the short-dashed line except that each echelle order is �tted separately. The solid

line gives the true mean. The top-panel shows the result of applying the power spectrum estimator P̂2 (eq. [12a]) with uniform weighting

(eq. [14]). The symbol �P2=P stands for (P̂2� P )=P where P is the true power spectrum. The di�erent lines correspond to di�erent choices
of the mean-basis, labeled as in the second panel.
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Fig. 3.| Similar to Fig. 2 except that a relative calibration between di�erent echelle orders have not been done, and the input continuum is
taken from continuum-�ts to an observed quasar spectrum. The dotted line in the top two panels corresponds to the case where the continuum
is modeled as 
at for each order. The dashed line is where polynomials up to the third order are used to �t for the mean transmission in each
order. The solid line in the second panel from the top shows the true mean transmission.
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Fig. 4.| The bottom 2 panels are the same as in Fig. 3. The solid line in the top second panel shows the true continuum level (as opposed
to the true transmission mean level as before). The dashed line is a continuum-�t to the simulated spectrum. In the top panel, �P=P

denotes (P̂un� Pun)=Pun (the un-normalized power spectrum eq. [10] & [1]) for the upper long-dashed line; while it denotes (P̂1 �P )=P (the
normalized power spectrum, but estimated using the continuum-�tted data; eq. [11] & [2]) for the lower short-dashed line.
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Fig. 5.| Similar to Fig. 4 except that the mean transmission is lower (0.39 instead of 0.64). The solid and dashed line in the second
panel from the top represent respectively the true continuum level and the continuum-�ts. In the top panel, the upper long-dashed line
shows (P̂un � Pun)=Pun (error for the un-normalized power spectrum estimated from eq. [10]); the lower short-dashed line shows (P̂1 � P )=P

(error for the normalized power spectrum estimated using continuum-�tted data; eq. [11]); the dotted line shows (P̂2 � P )=P (error for the
normalized power estimated using trend-removal with a 
at trend for each echelle order; eq. [12]).
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Fig. 6.| The bottom 2 panels show a low resolution (FWHM = 1.17 �A), somewhat noisy simulated spectrum based on the one in Fig.
1. The solid line in the second panel from the top is the true continuum (not mean transmission) whereas the dashed line corresponds to a

continuum-�t to the data in the bottom panel. In the top panel, �P=P denotes (P̂un�Pun)=Pun (the un-normalized power spectrum eq. [10]

& [1]) for the lower long-dashed line; while it denotes (P̂1 �P )=P (the normalized power spectrum, but estimated using the continuum-�tted
data; eq. [11] & [2]) for the upper short-dashed line.
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Fig. 7.| The bottom 2 panels are the same as in Fig. 6. The second panel from the top shows the recovery of the mean transmission
assuming a model composing of polynomials up to the third order (dashed line). The solid line shows the true mean. The dashed line in the

top panel represents (P̂2 � P )=P { the error for the normalized power spectrum estimated using eq. (12). The dotted line shows the power
spectrum estimate if shot-noise were not subtracted.
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Fig. 8.| The bottom two panels show continuum-�ts taken from the red (bottom) and blue (second from bottom) sides of Ly� emission
from the spectrum of a quasar at redshift z = 3. The top panel shows the power spectra of the red and blue continua (eq. [21b]) with solid and
dotted lines respectively. They are very close to each other, the panel below it shows their fractional di�erence [PC(blue)�PC(red)]=PC(red).
Also shown in the top panel is the quantity �G(k) (eq. [22]), with solid and dotted lines denoting its values on the red and blue sides. They
di�er by only a few percent.
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Fig. 9.| A demonstration of power spectrum corrections on large scales. The theoretical spectrum from Fig. 1 is multiplied by a set of
10 di�erent continua (one of which is shown in the middle panel), convolved with a Gaussian of 0.125 �AFWHM and with a small amount of
noise added (similar to Fig. 2). The resulting 10 simulated spectra (one of which is shown in the bottom panel) is analyzed and the resulting
power spectrum fractional error is shown in the top panel. Solid line shows error in the power spectrum estimate with no corrections applied
(eq. [12] or [20]); dotted line shows the error using the estimator P̂4 in eq. (24), and dashed line shows the error using P̂3 from eq. (23).
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Fig. 10.| Similar to Fig. 9, except that the noise level and resolution resemble instead those of Fig. 6. Note how the noise added makes
the continuum (middle panel), from which we estimate the continuum power spectrum, quite noisy as well. In the top panel, the solid line
shows the fractional error in the power spectrum estimate with no corrections applied (eq. [12] or [20]), and the dotted line shows the error

using the estimator P̂4 from eq. (24).
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Fig. 11.| The bottom panel shows a simulated spectrum with resolution and S/N similar to Fig. 3, except that metal absorption lines
shown in the second panel have been added. The y-axis of the second panel is e�� where � is the optical depth due to metal absorption. The
seond panel on the top shows the true mean transmission and the recovered mean transmission assuming a 
at trend for each order (dotted

line). The dotted line in the top panel is (P̂2� P )=P for the case where no attempt is made to cut out the metal lines; the dashed (solid) line
is the same fractional error for the normalized power spectrum for the case where all metal lines with � > 1 (� > 0:4) are discarded and the
corresponding gaps �lled in via interpolation.
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Fig. 12.| Power spectrum measurements from low resolution and noisy quasar spectra (similar to Fig. 6), with (dotted) and without
(dashed) metal contamination.



34

Fig. 13.| Power spectrum estimation using uniform weighting (bottom panel; eq. [14]) versus minimum variance weighting (top panel; eq.
[30]). The simulated QSO spectrum consists of 12 segments, half of which have comparable S/N to Fig. 3 and half of which have � 20 times
lower S/N.
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Fig. 14.| The solid line is the mean observed transmission power spectrum at z = 3 from McDonald et al. (1999). Its continuation as a
dashed line at small k's indicate the scales at which continuummight introduce signi�cantuncertainties, and so the power is not shown. The two
dotted lines at top and bottom shows the level of shot-noise at two extremes. The top one resembles the quality expected for SDSS spectrawhile
the bottom resemblesHIRES Keck spectra of bright quasars. The interval of �kuse at the bottom indicates the range of scales that are currently
used to recover the linear mass power spectrum. The long tickmarks at the top indicates the resolution of SDSS and typical Keck HIRES spec-

tra. Di�erent units of k are related by [k= (km=s)�1] = [(1+z)=4][k=�A
�1

]=61:67 = [(1+z)=
p


m(1 + z)3 + 
k(1 + z)2 + 
�][k=hMpc�1]=100.


